88 lines
2.2 KiB
C
88 lines
2.2 KiB
C
#include "training.h"
|
|
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <time.h>
|
|
|
|
#include "structure.h"
|
|
#include "toolsnetworks.h"
|
|
#include "traitement.h"
|
|
|
|
#define NB_OUTPUT 65
|
|
|
|
void training(Neural_Network *network, int nb_repetition)
|
|
{
|
|
int nbchar = 65;
|
|
int nbimageschar = 53;
|
|
int datasetsize = nbchar * nbimageschar;
|
|
|
|
// On construit les tableaux input de taille nbrepetition, et on initialise
|
|
// en même temps le coût attendu à 0 pour toutres les répétitions (on a
|
|
// nbrépétition tableaux de taille 63 initialisés à 0).
|
|
double **input = (double **)malloc(datasetsize * sizeof(double *));
|
|
double **cost = (double **)malloc(datasetsize * sizeof(double));
|
|
|
|
char str[100];
|
|
|
|
for (int i = 0; i < datasetsize; i++)
|
|
{
|
|
cost[i] = (double *)calloc(NB_OUTPUT, sizeof(double));
|
|
}
|
|
|
|
for (int i = 0; i < nbimageschar; i++)
|
|
{
|
|
for (int j = 0; j < nbchar; j++)
|
|
{
|
|
sprintf(str, "src/Dataset/image-%d-%d.bmp", j, i + 1);
|
|
input[i * nbchar + j] = imagetomatrix(str, 20);
|
|
cost[i * nbchar + j][j] = 1;
|
|
}
|
|
}
|
|
|
|
double err = 1.0;
|
|
|
|
for (int i = 0; i < nb_repetition; i++)
|
|
{
|
|
err = 0;
|
|
|
|
for (int j = 0; j < datasetsize; j++)
|
|
{
|
|
// On fait ensuite appel au ForwardPass sur cette itération <=> on
|
|
// voit ce que renvoie notre réseau pour la matrice de pixel
|
|
// correspondant à l'image récupérée.
|
|
ForwardPass(input[j], network);
|
|
|
|
double tmp_err = 0.0;
|
|
|
|
for (int k = 0; k < NB_OUTPUT; k++)
|
|
{
|
|
tmp_err += (cost[j][k] - network->layers[1].cells[k].output)
|
|
* (cost[j][k] - network->layers[1].cells[k].output);
|
|
}
|
|
|
|
tmp_err /= NB_OUTPUT;
|
|
err += tmp_err;
|
|
|
|
BackwardPass(cost[j], input[j], network);
|
|
}
|
|
|
|
err /= datasetsize;
|
|
printf("Erreur : %f\n", err);
|
|
}
|
|
|
|
for (int i = 0; i < datasetsize; i++)
|
|
{
|
|
free(input[i]);
|
|
}
|
|
|
|
for (int i = 0; i < datasetsize; i++)
|
|
{
|
|
free(cost[i]);
|
|
}
|
|
|
|
free(input);
|
|
free(cost);
|
|
}
|